
Technical description of peaked circuits

1 Background
In recent years, much interest has developed toward quantum benchmarking, wherein one develops
quantum-computational problems to suitably test the capabilities of a given quantum computer or
simulator. Indeed, this is a preeminent goal of all so-called “quantum supremacy” experiments: The
overarching aim is to describe a series of operations that can be performed by a quantum computer
or simulator such that, if complete with results that satisfy a given bound in an appropriate metric,
one can know with high confidence that the computer or simulator is capturing the “quantum-ness”
of the operations.

The peaked circuit is one recently proposed idea, which is defined as a quantum circuit that
takes a fixed input state to an output distribution over the computational space that contains a
significant concentration of probability mass in a particular arbitrary computational basis state.
Thus, successful completion of a peaked circuit benchmark is entailed by (a) execution of the
peaked circuit, and (b) correct determination of the basis state on which the output distribution
is concentrated. In a proper construction, the peaked circuit is qualitatively close to a completely
randomized circuit and requires the executor to faithfully model the coherence and entanglement
present in the quantum state (more on this below).

2 Generation and properties of peaked quantum circuits
Here, we take a quantum circuit on 𝑁  qubits as a unitary operator acting on the appropriate
Hilbert space describing the 𝑁 -fold tensor product of concatenated two-level quantum systems. Any
such circuit may be described by a complex-valued matrix 𝑈 ∈ ℂ2𝑁×2𝑁  with the property that 𝑈
preserves the standard induced 2-norm of the underlying Hilbert space and has unit determinant.
In particular, adapting Def. 1.1 in arXiv:.2404.14493, we may say that a given circuit 𝐶 is 𝛿, 𝑞-
peaked if

max
𝑠∈{0,1}𝑁

|⟨𝑠|𝐶|𝑞⟩|2 ≥ 𝛿 (1)

That is, the maximum probability mass accrued by any output state |𝑠⟩ for fixed input state |𝑞⟩
through the action of 𝐶 is bounded from below by a real constant 𝛿 ∈ (0, 1].

Given fixed |𝑞⟩, one then may ask how to obtain a peaked circuit. Of course, one can obtain a 1, 𝑞
-peaked circuit trivially by simply generating an arbitrary series of gates, appending the inverses of
those gates in reverse order, and applying as many single-qubit NOT gates as it takes to transform
|𝑞⟩ into a fixed target state |𝑠0⟩. However, this structure is easily detected simply by analyzing the
circuit classically, defeating the purpose of the benchmark.

Instead, we start by generating an approximately Haar-random state; that is, for input state |𝑞⟩
fixed to the 𝑁 -qubit all-zero state |0⟩⊗𝑁 , we sample a random circuit 𝑈r of depth 𝜏r

𝑈r ≡ 𝒯
{{
{
{{
∏
𝜏r−1

𝑡=0
⨂
⌊𝑁− ̄𝑡

2 ⌋

𝑘=0
𝑢(𝑑,𝑘)2𝑘+ ̄𝑡,2𝑘+ ̄𝑡+1

}}
}
}}

(2)
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where ̄𝑥 denotes the reduction of 𝑥 modulo 2 and 𝒯 the time-ordering superoperator. Each 𝑢(𝑡,𝑘)𝑞,𝑞′ ∈
SU(4) at depth 𝑡 on qubits 𝑞 < 𝑞′ is drawn uniformly under the Haar measure and applied in a
brickwork arrangement to produce

|𝜓r⟩ ≡ 𝑈r|0⟩⊗𝑁 . (3)

We then feed |𝜓r⟩ as input into another circuit Υp of depth 𝜏p,

Υp ≡ 𝒯
{{
{
{{

∏
𝜏r+𝜏p−1

𝑡=𝜏r

⨂
⌊𝑁− ̄𝑡

2 ⌋

𝑗=0
𝜐(𝑡,𝑘)2𝑘+ ̄𝑡,2𝑘+ ̄𝑡+1

}}
}
}}

(4)

with each 𝜐(𝑡,𝑗)𝑞,𝑞′ ∈ SU(4) applied similarly in a brickwork arrangement but chosen specifically to peak
|𝜓r⟩ to at least 𝛿, i.e.

Figure 1:  Peaking action of the circuit 𝐶 = Υp𝑈r. An approximately Haar-random
state (orange) is prepared by the random brickwork circuit 𝑈r, and passed through the
peaking circuit Υp. Just before the final measurement layer (red), the state’s probability
distribution contains a peak with probability at least 𝛿.

Thus, the benchmarking task we provide is simple but demanding:

Problem 1. (Peaked circuits)
Given a 𝛿, 0-peaked circuit 𝐶 on 𝑁  qubits, find the output state |𝑠0⟩, 𝑠0 ∈ {0, 1}𝑁
such that

𝑠0 = argmax
𝑠∈{0,1}𝑁

|⟨𝑠|𝐶|0⟩⊗𝑁 |2 (5)
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3 Entanglement in random brickwork circuits
Problem 1, as with almost all problems in quantum computing, is subject to a fundamental
exponential bound: By applying brickwork circuits comprising arbitrary two-qubit unitaries, we
generate a significant amount of long-range entanglement in the quantum state, the information-
theoretic content of which becomes an unavoidable obstacle to simulation. Simultaneously, we have
fine-tuned the parameters of our circuits to avoid complete saturation of the well-known upper
bound on entanglement–this is what allows them to even be simulated in the first place.

More specifically, the entanglement of a given state |𝜓⟩ is quantified using the entropy of entan-
glement, typically using the family of entropies known as the Rényi entropies of orders 𝛼 across a
given bipartition of the state, 𝐴⊗𝐵 = ℋ ∋ 𝜓:

𝑆𝐴𝛼 (|𝜓⟩) =
1

1 − 𝛼
log tr 𝜌𝛼𝐴 (6)

where 𝜌𝐴 denotes the partial trace of the density matrix of |𝜓⟩ over 𝐵,

𝜌𝐴 = tr𝐵|𝜓⟩⟨𝜓| ≡ ∑
𝑏∈ basis(𝐵)

⟨𝑏|𝜓⟩⟨𝜓|𝑏⟩. (7)

Usually, one chooses to work with the von Neumann entropy of the state, which the Rényi entropies
reduce to in the 𝛼 → 1 limit. The von Neumann entropy can be expressed more naturally as

𝑆𝐴(|𝜓⟩) ≡ tr[𝜌𝐴 log 𝜌𝐴]. (8)

Notably, the entropy of entanglement in a fixed state |𝜓⟩ is a function of two variables. The first is
the state itself, and the second is the exact bipartition chosen to evaluate 𝑆𝐴. As a function of the
latter, the entropy reaches a maximal value for 𝐴 and 𝐵 chosen as symmetric halves of the total
Hilbert space. Further, there also exist states of maximal entropy, saturating a global maximum

𝑆max|𝜓⟩ =
𝑁
2
log 2 + 𝒪(1) (9)

in units of nats (1 bit = log 2 ≈ 0.693 nat). A state of maximal entanglement entropy can be prepared
by means of a brickwork circuit comprising random two-qubit unitaries (as above), and the entropy
in the state accrues entanglement as it progresses through the circuit as approximately this function
of circuit depth 𝑡:

𝑆|𝜓⟩(𝑡) = 𝑆max|𝜓⟩ (1 − 𝑒−𝑡/𝑁 log 2). (10)

From a practical perspective, this entanglement entropy is a fundamental barrier to computation
because it represents irreducible information encoded in the state. Although algorithms exist to
factor a state into smaller parts (see also so-called matrix product states), one cannot do so past
a certain limit without significantly decreasing the fidelity of the computation: This manifests as
growth of the irreducible part of the quantum state as it passes through successive layers of our
circuits, and forms half the basis for the hardness of our circuits as a whole (see below for the
other half).

In our design, the initial randomizing circuits 𝑈r are constructed to generate significant amounts
of entanglement entropy within the state, but not to saturate the entanglement bound 𝑆max for
larger states. Critically, this allows the clever miner room to find minimal representations of the
circuit or state that will allow more efficient simulation; alternatively, one may choose to judiciously
discard some information in the state as another route to feasible computation.
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4 Peaking and difficulty scaling
Here we describe a finely tuned set of scaling functions that parameterize our peaked circuits in
terms of a single “difficulty” value 0 ≤ 𝑑 ≤ 5. There are three important respects in which our
brickwork peaked circuits can vary, which are

1. the number of qubits 𝑁 ;
2. the depths 𝜏r and 𝜏p of the randomizing and peaking circuits;
3. the extent to which the output state is peaked, defined as the ratio

𝑘 ≡ 𝑝0
𝑝′

(11)

of the target state 𝑠0’s probability 𝑝0 relative to the next-highest basis state probability 𝑝′.
The number of qubits 𝑁  determines the dimension of the Hilbert space we work in, which ultimately
sets the upper bound on how much information can be encoded (and, hence, must be represented
in a faithful simulation) in the quantum state at a given point in the execution of the circuit. Said
dimension is fundamentally exponential in 𝑁 , so we construct a logarithmic scaling:

𝑁 = ⌊10 log2(𝑑 + 3.9) + 12⌋ (12)

which admits a sub-exponential dependence on 𝑑 in real circuit execution difficulty.
The depth 𝜏r of the randomizing circuit determines the extent to which this informational upper

bound is saturated (see Section 3). The size of the quantum state increases exponentially with
the entanglement entropy in the state, making it more computationally challenging to simulate
accurately. However, most real-world circuits do not completely saturate the entanglement bound;
hence we set

𝜏r = ⌊
𝑁
2
⌋ (13)

specifically to reach around half the maximum entanglement entropy for the number of qubits. This
allows room for clever miners to optimize their chosen simulation methods, rather than be forced
into the hardest possible simulation regime.

Finally, we set the “peaking ratio” 𝑘 using the peak probability 𝑝0 as the tunable parameter

𝑝0 =
100.38𝑑+2.102

2𝑁
. (14)

That is, we set the absolute peaking probability to be a multiple 100.38𝑑+2.102 times the appropriate
probability for a completely uniform probability over 𝑁  qubits. In testing, we noted that, while this
peaking is always attainable with 𝜏r = ⌊𝑁/5⌋, the peaking procedure tends to cause non-uniform
modifications to the other basis states’ probabilities. Indeed, we choose this specific scaling for
𝑝0 to keep 𝑘 approximately in the 2–4 range, still ensuring that circuits are solvable, which has
ramifications for sampling-based (as opposed to memory-intensive state vector-based) approaches
to solution. We leave the determination of how many shots to take as a challenge to the miner.
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